How do I evaluate intdx/(e^(x)(3e^(x)+2))?

1 Answer
Jun 18, 2018

The answer is =-1/(2e^x)-3/4x+3/4ln(3e^x+2)+C

Explanation:

Let e^x=u, =>, du=e^xdx

Therefore, the integral is

I=int(dx)/(e^x(3e^x+2))=int(du)/(e^(2x)(3e^x+2))

=int(du)/(u^2(3u+2))

Perform the decomposition into partial fractions

1/(u^2(3u+2))=A/u^2+B/u+C/(3u+2)

=(A(3u+2)+Bu(3u+2)+Cu^2)/(u^2(3u+2))

The denominator is the same, compare the numerators

1=A(3u+2)+Bu(3u+2)+Cu^2

Let u=0, =>, 1=2A, =>, A=1/2

Coefficients of u

0=3A+2B, =>, B=-3/2A=-3/4

Coefficients of u^2

0=3B+C, =>, C=-3B=9/4

Therefore,

1/(u^2(3u+2))=(1/2)/u^2+(-3/4)/u+(9/4)/(3u+2)

So,

int(du)/(u^2(3u+2))=1/2int(du)/u^2-3/4int(du)/u+9/4int(du)/(3u+2)

=-1/(2u)-3/4lnu+3/4ln(3u+2)

=-1/(2e^x)-3/4ln(e^x)+3/4ln(3e^x+2)+C

=-1/(2e^x)-3/4x+3/4ln(3e^x+2)+C