How do I evaluate inte^(2x)cosx dxe2xcosxdx by parts?

1 Answer
Feb 1, 2015

I´ll start by integrating e^(2x)e2x and leaving cos(x)cos(x) as it is and then derive it leaving the integrated part as it is.

e^(2x)/2*cos(x)-inte^(2x)/2*(-sin(x))dx=e2x2cos(x)e2x2(sin(x))dx=
=e^(2x)/2*cos(x)+1/2inte^(2x)*(sin(x))dx==e2x2cos(x)+12e2x(sin(x))dx=

by parts again:
=e^(2x)/2*cos(x)+1/2[e^(2x)/2*(sin(x))-inte^(2x)/2*cos(x)dx]==e2x2cos(x)+12[e2x2(sin(x))e2x2cos(x)dx]=
=e^(2x)/2*cos(x)+e^(2x)/4*(sin(x))-1/4inte^(2x)*cos(x)dx=e2x2cos(x)+e2x4(sin(x))14e2xcos(x)dx

So your integral is:
inte^(2x)cos(x)dx=e^(2x)/2*cos(x)+e^(2x)/4*(sin(x))-1/4inte^(2x)*cos(x)dxe2xcos(x)dx=e2x2cos(x)+e2x4(sin(x))14e2xcos(x)dx

Now I can take to the left the integral: -1/4inte^(2x)*cos(x)dx14e2xcos(x)dx
Giving:

inte^(2x)cos(x)dx+1/4inte^(2x)*cos(x)dx=e^(2x)/2*cos(x)+e^(2x)/4*(sin(x))e2xcos(x)dx+14e2xcos(x)dx=e2x2cos(x)+e2x4(sin(x))

5/4inte^(2x)*cos(x)dx=e^(2x)/2*cos(x)+e^(2x)/4*(sin(x))54e2xcos(x)dx=e2x2cos(x)+e2x4(sin(x))

and finally:
inte^(2x)*cos(x)dx=4/5[e^(2x)/2*cos(x)+e^(2x)/4*(sin(x))]+ce2xcos(x)dx=45[e2x2cos(x)+e2x4(sin(x))]+c