The answer is: 3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c32⋅x√4+x2+6arcsinh(x2)+c
First of all:
intsqrt(36+9x^2)dx=3intsqrt(4+x^2)dx∫√36+9x2dx=3∫√4+x2dx and now we have to substitute:
x=2sinhtrArrdx=2coshtdtx=2sinht⇒dx=2coshtdt.
So:
3intsqrt(4+x^2)dx=3intsqrt(4+4sinh^2t)*2coshtdt=3∫√4+x2dx=3∫√4+4sinh2t⋅2coshtdt=
=3int2sqrt(1+sinh^2t)*2coshtdt=12intcosh^2tdt==3∫2√1+sinh2t⋅2coshtdt=12∫cosh2tdt=
=12int(cosh2t+1)/2dt=6(sinh2t)/2+6t+c==12∫cosh2t+12dt=6sinh2t2+6t+c=
=3*2sinhtcosht+6t+c==3⋅2sinhtcosht+6t+c=
Now: sinht=x/2sinht=x2, t=arcsinh(x/2)t=arcsinh(x2)
since cosht=sqrt(1+sinh^2tcosht=√1+sinh2t, than cosht=sqrt(1+x^2/4)=cosht=√1+x24=
=sqrt((4+x^2)/4)=1/2sqrt(4+x^2)=√4+x24=12√4+x2
So:
I=6*x/2*1/2sqrt(4+x^2)+6arcsinh(x/2)+c=I=6⋅x2⋅12√4+x2+6arcsinh(x2)+c=
=3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c=32⋅x√4+x2+6arcsinh(x2)+c