How do I evaluate intsqrt(36+9x^2)dx36+9x2dx?

1 Answer
Feb 15, 2015

The answer is: 3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c32x4+x2+6arcsinh(x2)+c

First of all:

intsqrt(36+9x^2)dx=3intsqrt(4+x^2)dx36+9x2dx=34+x2dx and now we have to substitute:

x=2sinhtrArrdx=2coshtdtx=2sinhtdx=2coshtdt.

So:

3intsqrt(4+x^2)dx=3intsqrt(4+4sinh^2t)*2coshtdt=34+x2dx=34+4sinh2t2coshtdt=

=3int2sqrt(1+sinh^2t)*2coshtdt=12intcosh^2tdt==321+sinh2t2coshtdt=12cosh2tdt=

=12int(cosh2t+1)/2dt=6(sinh2t)/2+6t+c==12cosh2t+12dt=6sinh2t2+6t+c=

=3*2sinhtcosht+6t+c==32sinhtcosht+6t+c=

Now: sinht=x/2sinht=x2, t=arcsinh(x/2)t=arcsinh(x2)

since cosht=sqrt(1+sinh^2tcosht=1+sinh2t, than cosht=sqrt(1+x^2/4)=cosht=1+x24=

=sqrt((4+x^2)/4)=1/2sqrt(4+x^2)=4+x24=124+x2

So:

I=6*x/2*1/2sqrt(4+x^2)+6arcsinh(x/2)+c=I=6x2124+x2+6arcsinh(x2)+c=

=3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c=32x4+x2+6arcsinh(x2)+c