How do I evaluate intz/e^(3z) dz?

1 Answer
Jan 29, 2015

I would first write your integral in a more friendly form:
intz/(e^(3z))dz=intz*e^(-3z)dz

I would then use integration by parts:
Where you have:
intf(z)*g(z)dz=F(z)*g(z)-intF(z)*g'(z)dz

Where:
F(z)=intf(z)dz
g'(z) is the derivative of g(z)

In your case you can choose:
f(z)=e^(-3z)
g(z)=z
And:
intz*e^(-3z)dz=z*e^(-3z)/(-3)-int1*e^(-3z)/(-3)dz=
=z*e^(-3z)/(-3)-e^(-3z)/9+c