How do I find the partial-fraction decomposition of (3x^2+2x-1)/((x+5)(x^2+1))3x2+2x1(x+5)(x2+1)?

1 Answer
Oct 20, 2014

(3x^2+2x-1)/((x+5)(x^2+1))3x2+2x1(x+5)(x2+1) becomes ...

(3x^2+2x-1)/((x+5)(x^2+1))=A/(x+5)+(Bx+C)/(x^2+1)3x2+2x1(x+5)(x2+1)=Ax+5+Bx+Cx2+1

Multiply through by (x+5)(x^2+1)(x+5)(x2+1)

(3x^2+2x-1)=A(x^2+1)+(Bx+C)(x+5)(3x2+2x1)=A(x2+1)+(Bx+C)(x+5)

First solve for AA

x=-5x=5

(3(-5)^2+2(-5)-1)=A((-5)^2+1)+(B(-5)+C)((-5)+5)(3(5)2+2(5)1)=A((5)2+1)+(B(5)+C)((5)+5)

(3(25)-10-1)=A(25+1)+(-5B+C)(0)(3(25)101)=A(25+1)+(5B+C)(0)

(75-10-1)=A(26)+(-5B+C)(0)(75101)=A(26)+(5B+C)(0)

64=26A64=26A

64/26=(26A)/266426=26A26

32/13=A3213=A

Now solve for CC

Substitute in for xx and AA

x=0, A=32/13x=0,A=3213

(3(0)^2+2(0)-1)=(32/13)((0)^2+1)+(B(0)+C)((0)+5)(3(0)2+2(0)1)=(3213)((0)2+1)+(B(0)+C)((0)+5)

(-1)=(32/13)(1)+(C)(5)(1)=(3213)(1)+(C)(5)

-1=32/13+5C1=3213+5C

-1-32/13=5C13213=5C

(-13)/13-32/13=5C13133213=5C

(-45)/13=5C4513=5C

((-45)/13)/5=(5C)/545135=5C5

((-45)/13)*1/5=C(4513)15=C

((-9)/13)*1/1=C(913)11=C

(-9)/13=C913=C

Substitute in AA and CC and let x=1x=1 as you solve for BB

(3(1)^2+2(1)-1)=(32/13)((1)^2+1)+(B(1)+((-9)/13))((1)+5)(3(1)2+2(1)1)=(3213)((1)2+1)+(B(1)+(913))((1)+5)

(3+2-1)=(32/13)(1+1)+(B-9/13)(1+5)(3+21)=(3213)(1+1)+(B913)(1+5)

4=(32/13)(2)+(B-9/13)(6)4=(3213)(2)+(B913)(6)

4=(64/13)+(6B-54/13)4=(6413)+(6B5413)

4-64/13+54/13=6B46413+5413=6B

52/13-64/13+54/13=6B52136413+5413=6B

106/13-64/13=6B106136413=6B

42/13=6B4213=6B

(42/13)/6=(6B)/642136=6B6

(42/13)*1/6=B(4213)16=B

7/13=B713=B

Substitute in AA, BB, and CC

(3x^2+2x-1)/((x+5)(x^2+1))=(32/13)/(x+5)+((7/13)x+(-9)/13)/(x^2+1)3x2+2x1(x+5)(x2+1)=3213x+5+(713)x+913x2+1

(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x+(-9))/(13(x^2+1))3x2+2x1(x+5)(x2+1)=3213(x+5)+7x+(9)13(x2+1)

Partial-Fraction Decomposition

(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x-9)/(13(x^2+1))3x2+2x1(x+5)(x2+1)=3213(x+5)+7x913(x2+1)