#(3x^2+2x-1)/((x+5)(x^2+1))# becomes ...
#(3x^2+2x-1)/((x+5)(x^2+1))=A/(x+5)+(Bx+C)/(x^2+1)#
Multiply through by #(x+5)(x^2+1)#
#(3x^2+2x-1)=A(x^2+1)+(Bx+C)(x+5)#
First solve for #A#
#x=-5#
#(3(-5)^2+2(-5)-1)=A((-5)^2+1)+(B(-5)+C)((-5)+5)#
#(3(25)-10-1)=A(25+1)+(-5B+C)(0)#
#(75-10-1)=A(26)+(-5B+C)(0)#
#64=26A#
#64/26=(26A)/26#
#32/13=A#
Now solve for #C#
Substitute in for #x# and #A#
#x=0, A=32/13#
#(3(0)^2+2(0)-1)=(32/13)((0)^2+1)+(B(0)+C)((0)+5)#
#(-1)=(32/13)(1)+(C)(5)#
#-1=32/13+5C#
#-1-32/13=5C#
#(-13)/13-32/13=5C#
#(-45)/13=5C#
#((-45)/13)/5=(5C)/5#
#((-45)/13)*1/5=C#
#((-9)/13)*1/1=C#
#(-9)/13=C#
Substitute in #A# and #C# and let #x=1# as you solve for #B#
#(3(1)^2+2(1)-1)=(32/13)((1)^2+1)+(B(1)+((-9)/13))((1)+5)#
#(3+2-1)=(32/13)(1+1)+(B-9/13)(1+5)#
#4=(32/13)(2)+(B-9/13)(6)#
#4=(64/13)+(6B-54/13)#
#4-64/13+54/13=6B#
#52/13-64/13+54/13=6B#
#106/13-64/13=6B#
#42/13=6B#
#(42/13)/6=(6B)/6#
#(42/13)*1/6=B#
#7/13=B#
Substitute in #A#, #B#, and #C#
#(3x^2+2x-1)/((x+5)(x^2+1))=(32/13)/(x+5)+((7/13)x+(-9)/13)/(x^2+1)#
#(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x+(-9))/(13(x^2+1))#
Partial-Fraction Decomposition
#(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x-9)/(13(x^2+1))#