How do I find the value of cos 225? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Sep 14, 2015 It is -sqrt2/2−√22 Explanation: It is cos(225)=cos(180+45)=cos180*cos45-sin180*sin45=-1*sqrt2/2-0*sqrt2/2=-sqrt2/2cos(225)=cos(180+45)=cos180⋅cos45−sin180⋅sin45=−1⋅√22−0⋅√22=−√22 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 64309 views around the world You can reuse this answer Creative Commons License