How do I find the value of csc 11pi / 6? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Aug 17, 2015 Find #sin ((11pi)/6)# Ans: - 2 Explanation: On the trig unit circle, #sin ((11pi)/6) = sin (-pi/6 + 2pi) = sin (-pi/6) = -sin (pi/6) = - 1/2# #csc ((11pi)/6) = 1/sin ((11pi)/6) = - 2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 26703 views around the world You can reuse this answer Creative Commons License