How do I find the value of sin 225? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Trevor Ryan. Oct 29, 2015 -1/sqrt2−1√2 Explanation: sin225^@=sin(180^@+45^@)sin225∘=sin(180∘+45∘) =sin180^@cos45^@+cos180^@sin45^@=sin180∘cos45∘+cos180∘sin45∘ =(0)(1/sqrt2)+(-1)1/sqrt2=(0)(1√2)+(−1)1√2 =-1/sqrt2−1√2 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 74840 views around the world You can reuse this answer Creative Commons License