How do I graph y=x^2-6x+5?
1 Answer
If we want to take a more algebraic/analytical approach:
Determine the function's zeros:
We can find where the function crosses the
x^2-6x+5=0
Factor this by looking for two numbers that add up to
(x-5)(x-1)=0
x=5" "" "x=1
We know the graph of the parabola will cross the
graph{((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Determine the function's y-intercept:
The
y=0^2-6(0)+5=5
There is a
graph{((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Determining the vertex:
The
ax^2+bx+c
can be found through the formula
x_"vertex"=-b/(2a)
(This is also on the vertical line where the parabola's axis of symmetry lies.)
For
x_"vertex"=-(-6)/(2*1)=6/2=3
The
y=3^2-6(3)+5=9-18+5=-4
So we know
graph{((x-3)^2+(y+4)^2-1/20)((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Using the symmetric properties of a parabola, since we know
graph{((x-6)^2+(y-5)^2-1/30)((x-3)^2+(y+4)^2-1/20)((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Using these points, we can draw the parabola quite well:
graph{x^2-6x+5 [-8.36, 14.15, -5.5, 7.75]}