How do I graph #y=x^2-6x+5#?
1 Answer
If we want to take a more algebraic/analytical approach:
Determine the function's zeros:
We can find where the function crosses the
#x^2-6x+5=0#
Factor this by looking for two numbers that add up to
#(x-5)(x-1)=0#
#x=5" "" "x=1#
We know the graph of the parabola will cross the
graph{((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Determine the function's y-intercept:
The
#y=0^2-6(0)+5=5#
There is a
graph{((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Determining the vertex:
The
#ax^2+bx+c#
can be found through the formula
#x_"vertex"=-b/(2a)#
(This is also on the vertical line where the parabola's axis of symmetry lies.)
For
#x_"vertex"=-(-6)/(2*1)=6/2=3#
The
#y=3^2-6(3)+5=9-18+5=-4#
So we know
graph{((x-3)^2+(y+4)^2-1/20)((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Using the symmetric properties of a parabola, since we know
graph{((x-6)^2+(y-5)^2-1/30)((x-3)^2+(y+4)^2-1/20)((x-5)^2+y^2-1/30)((x-1)^2+y^2-1/30)(x^2+(y-5)^2-1/30)=0 [-7.33, 15.18, -6.24, 7.01]}
Using these points, we can draw the parabola quite well:
graph{x^2-6x+5 [-8.36, 14.15, -5.5, 7.75]}