int (sec(x))/(4-3tan(x))dx = int (1/cos(x))/(4-3tan(x)) dx
Let's start with t =tan(x/2)
sec(x) = (1+t^2)/(1-t^2)
tan(x) = (2t)/(1-t^2)
dx = 2/(1+t^2) dt
So, the integral become :
=> int((1+t^2)/(1-t^2))/(4-(6t)/(1-t^2))*2/(1+t^2)dt
=>int((1+t^2)/(1-t^2))/((4(1-t^2))/(1-t^2)-(6t)/(1-t^2))*2/(1+t^2)dt
=>int((1+t^2)/(1-t^2))/((-4t^2-6t+4)/(1-t^2))*2/(1+t^2)dt
=>int(1+t^2)/((-4t^2-6t+4))*2/(1+t^2)dt
=>int2/(2(-2t^2-3t+2))dt
=>int1/(-2t^2-3t+2)dt
Delta = b^2-4ac = 25
x_1 = 1/2
x_2 = -2
Factorize :
=>int-1/((2t-1)(t+2))dt
Partial fraction :
=>1/5int 1/(t+2)dt-1/5int2/(2t-1)dt
=>1/5[ln(|t+2|)]-1/5[ln(|2t-1|)]+C
=> 1/5((ln(|t+2|)-ln(|2t-1|))+C
Substitute back for t = tan(1/2x)
=> 1/5(ln(|tan(1/2x)+2|)-ln(|2tan(1/2x)-1|))+C