How do I solve this equation?

If f(x)=(x-1)^2 sinx, then f'(0)=?

1 Answer
Apr 15, 2018

f'(0)=1

Explanation:

we have to use the product rule

f(x)=color(red)(u)v=>f'(x)=color(red)(u')v+color(red)(u)v'

f(x)=(x-1)^2sinx

color(red)(u=(x-1)^2=>u'=2(x-1))

v=sinx=>v'=cosx

:.f'(x)=color(red)(2(x-1))sinx+color(red)((x-1)^2)cosx

:. f'(0)=cancel(2(0-1)sin0)+(0-1)^2cos0

f'(0)=1xx1=1