How do I find the integral #int(x^3+4)/(x^2+4)dx# ?
1 Answer
#I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c# , where#c# is a constantExplanation,
#I=int(x^3+4)/(x^2+4)dx #
#I=int((x^3)/(x^2+4)+4/(x^2+4))dx #
#I=int(x^3)/(x^2+4)dx+int4/(x^2+4)dx #
#I=I_1+I_2# .......#(i)# Now considering only first integral, which is
#I_1=int(x^3)/(x^2+4)dx# Using Integration by Substitution,
let's
#x^2=t# , then#2xdx=dt# yields, first integral
#=intt/2*1/(t+4)*dt#
#=1/2intt/(t+4)*dt# , this can be written as
#=1/2int(t+4-4)/(t+4)*dt#
#=1/2int(1-4/(t+4))dt#
#=1/2intdt-2int1/(t+4)dt#
#=1/2t-2ln(t+4)+c_1# , where#c_1# is a constantreplacing
#t# , we get,
#I_1=1/2x^2-2ln(x^2+4)+c_1# , where#c_1# is a constantconsidering second integral
#I_2=int4/(x^2+4)dx# using Trigonometric Substitution to solve this problem,
#I_2=4*1/2tan^-1(x/2)+c_2#
#I_2=2tan^-1(x/2)+c_2# Finally, plugging in both
#I_1# and#I_2# in#(i)#
#I=1/2x^2-2ln(x^2+4)+c_1+2tan^-1(x/2)+c_2#
#I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c# , where#c=c_1+c_2# is again a constant