#lim_(h->0) (f(x+h)-f(x))/h#
#f(x)=1/x#
#f(x+h)=1/(x+h)#
Substitute in these values
#lim_(h->0) (1/(x+h)-1/x)/h#
Get common denominator for the numerator of the complex fraction.
#f'(x)=lim_(h->0) (x/x*1/(x+h)-1/x*(x+h)/(x+h))/h#
#f'(x)=lim_(h->0) (x/(x(x+h))-(x+h)/(x(x+h)))/h#
#f'(x)=lim_(h->0) ((x-x-h)/(x(x+h)))/h#
#f'(x)=lim_(h->0) ((-h)/(x(x+h)))/h#
#f'(x)=lim_(h->0) (-h)/(x(x+h))*1/h#
#f'(x)=lim_(h->0) (-h)/(xh(x+h))#
#f'(x)=lim_(h->0) (-1)/(x(x+h))#
#f'(x)=(-1)/(x(x+0))#
#f'(x)=(-1)/(x(x))#
#f'(x)=(-1)/(x^2)#
#f'(3)=(-1)/((3)^2)=-1/9#
Alternative method
Now take the derivative of #f(x)# using the power rule.
#f(x)=1/x=x^-1#
#f'(x)=-1x^-2=-1/x^2#
#f'(3)=-1/(3)^2=-1/9#