How do I use the limit definition of derivative to find f'(x) for f(x)=sqrt(2+6x) ?

1 Answer
Oct 3, 2014

f'(x)=lim_(h->0) (f(x+h)-f(x))/h

f(x)=sqrt(2+6x)

f(x+h)=sqrt(2+6(x+h))=sqrt(2+6x+6h

Make the substitutions for f(x) and f(x+h)

f'(x)=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h

Rationalize the numerator

=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h*(sqrt(2+6x+6h)+sqrt(2+6x))/(sqrt(2+6x+6h)+sqrt(2+6x))

Remember the difference of perfect squares for the numerator

=lim_(h->0) ((2+6x+6h)-(2+6x))/(h*sqrt(2+6x+6h)+sqrt(2+6x))

Distribute the negative

=lim_(h->0) (2+6x+6h-2-6x)/(h*sqrt(2+6x+6h)+sqrt(2+6x))

Simplify numerator

=lim_(h->0) (6h)/(h*sqrt(2+6x+6h)+sqrt(2+6x))

Cancel the factors of h

=lim_(h->0) (6)/(sqrt(2+6x+6h)+sqrt(2+6x))

Substitute in the value of 0 for h and then simplify

=(6)/(sqrt(2+6x+6(0))+sqrt(2+6x))

=(6)/(sqrt(2+6x)+sqrt(2+6x))

=(6)/(2sqrt(2+6x))

=3/sqrt(2+6x)