How do you add (1+7i)+(-4-2i) in trigonometric form?

1 Answer
Jun 25, 2018

color(brown)(=> -3 + 5i

Explanation:

z=a+bi=r(costheta+isintheta)

r=sqrt(a^2+b^2)
theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(1^2+7^2))=sqrt50
r_2=sqrt(-4^2+-2^2) =sqrt20

theta_1=tan^-1(7/1)~~81.87^@, " I quadrant"
theta_2=tan^-1(-2/-4)~~206.57^@, " III quadrant"

z_1 + z_2 = sqrt50 cos(81.87) + sqrt20 cos(206.57) + i (sqrt50 sin(81.87)+ sqrt20 sin(206.57))

=> 1 -4 + i (7- 2 )
color(brown)(=> -3 + 5i

Proof:

1 + 7i - 4 - 2i

=> -3 + 5i