How do you add (-1-8i)+(-1-2i) in trigonometric form?

1 Answer
Jun 25, 2018

color(cyan)(=> -2 - 10 i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(-1^2+-8^2))=sqrt 65
r_2=sqrt(-1^2+-2^2) =sqrt 5

theta_1=tan^-1(-8/-1)~~ 262.87^@, " III quadrant"
theta_2=tan^-1(-2/-1)~~ 243.43^@, " III quadrant"

z_1 + z_2 = sqrt 65 cos(262.87) + sqrt 5 cos(243.43) + i (sqrt 65 sin(262.87)+ sqrt 5 sin(243.43))

=> -1 - 1 + i (-8 - 2 )

color(cyan)(=> -2 - 10 i