How do you add (-1+8i)+(4-2i) in trigonometric form?

1 Answer
Jun 25, 2018

color(indigo)(=> 3+ 6 i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(-1^2+ 8^2))=sqrt 65
r_2=sqrt(-2^2+ 4^2) =sqrt 20

theta_1=tan^-1(8 / -1)~~ 97.13^@, " II quadrant"
theta_2=tan^-1(-2/ 4)~~ 333.43^@, " IV quadrant"

z_1 + z_2 = sqrt 65 cos(97.13) + sqrt 20 cos(333.43) + i (sqrt 65 sin 97.13 + sqrt 20 sin 333.43)

=> -1 + 4 + i (8 - 2 )

color(indigo)(=> 3+ 6 i