How do you add (-2-3i)+(6-9i) in trigonometric form?

1 Answer
Jun 25, 2018

color(blue)(=> 4 - 12 i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(-2^2+ -3^2))=sqrt 13
r_2=sqrt(6^2+ -9^2) =sqrt 117

theta_1=tan^-1(-3/-2)~~ 236.31^@, " III quadrant"
theta_2=tan^-1(-9/ 6)~~ 303.69^@, " IV quadrant"

z_1 + z_2 = sqrt 13 cos(236.31) + sqrt 117 cos(303.69) + i (sqrt 13 sin 236.31 + sqrt 117 sin 303.69)

=> -2+ 6 + i (-3 - 9 )

color(blue)(=> 4 - 12 i