How do you add (2-5i)(25i) and (-2-2i)(22i) in trigonometric form?

1 Answer
Jul 9, 2018

color(red)(=> - 7i7i

Explanation:

z= a+bi= r (costheta+isintheta)z=a+bi=r(cosθ+isinθ)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)r=a2+b2, θ=tan1(ba)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r_1=sqrt(2^2+ -5^2))=sqrt 29r1=22+52)=29
r_2=sqrt(-2^2+ -2^2) =sqrt 8r2=22+22=8

theta_1=tan^-1(-5 / 2)~~ 291.8^@, " IV quadrant"θ1=tan1(52)291.8, IV quadrant
theta_2=tan^-1(-2/ -2)~~ 225^@, " III quadrant"θ2=tan1(22)225, III quadrant

z_1 + z_2 = sqrt 29 cos(291.8) + sqrt 8 cos(225) + i (sqrt 29 sin 291.8 + sqrt 8 sin 225)z1+z2=29cos(291.8)+8cos(225)+i(29sin291.8+8sin225)

=> 2 - 2 + i (-5 - 2 )22+i(52)

color(red)(=> - 7i7i