How do you add (2+i)+(5+3i)(2+i)+(5+3i) in trigonometric form?

1 Answer

7+4i=sqrt65[cos(tan^-1 (4/7))+i sin (tan^-1 (4/7))]7+4i=65[cos(tan1(47))+isin(tan1(47))]

Explanation:

From the given
(2+i)+(5+3i)(2+i)+(5+3i)

(2+5)+(i+3i)(2+5)+(i+3i)

7+4i7+4i

in Trigonometric Form

a+bi=sqrt(a^2+b^2)[cos (tan^-1 (b/a))+i sin (tan^-1 (b/a))]a+bi=a2+b2[cos(tan1(ba))+isin(tan1(ba))]

7+4i=sqrt65[cos(tan^-1 (4/7))+i sin (tan^-1 (4/7))]7+4i=65[cos(tan1(47))+isin(tan1(47))]

God bless....I hope the explanation is useful.