How do you add (6-i)(6i) and (-7+2i)(7+2i) in trigonometric form?

1 Answer

(6-i)+(-7+2i)=(6i)+(7+2i)=

Explanation:

First we add algebraically
(6-i)+(-7+2i)=(6-7)+(-1+2)i=-1+i=sqrt((-1)^2+1^2)[cos(arctan(1/-1))+isin(arctan(1/-1))](6i)+(7+2i)=(67)+(1+2)i=1+i=(1)2+12[cos(arctan(11))+isin(arctan(11))]

=sqrt2[cos(arctan(1/-1))+isin(arctan(1/-1))]=2[cos(arctan(11))+isin(arctan(11))]

God bless....I hope the explanation is useful.