How do you add (7+4i) and (2+6i) in trigonometric form?

1 Answer
Jan 29, 2018

9+10i

Explanation:

If we have a complex number such that z=a+bi, then z=r(costheta+isintheta), where:

  • r=sqrt(a^2+b^2)
  • theta=tan^(-1)(b/a)

For z_1=7+4i :
r=sqrt(7^2+4^2)=sqrt(49+16)=sqrt(65)
theta=tan^(-1)(4/7)~~29.7
=sqrt(65)(cos(29.7)+isin(29.7))

For z_2=2+6i :
r=sqrt(2^2+6^2)=sqrt(4+36)=sqrt(40)
theta=tan^(-1)(6/2)~~71.6
=sqrt(40)(cos(71.6)+isin(71.6))

For z_1+z_2 :
z_1+z_2=sqrt(65)cos(29.7)+isqrt(65)sin(29.7)+sqrt(40)cos(71.6)+isqrt(40)sin(71.6)

color(white)(z_1+z_2)=sqrt(65)cos(29.7)+sqrt(40)cos(71.6)+i(sqrt(65)sin(29.7)+sqrt(40)sin(71.6))

color(white)(z_1+z_2)=8.999470954+9.995734316i#

color(white)(z_1+z_2)~~9+10i

Proof:
7+4i+2+6i=(7+2)+i(4+6)=9+10i