How do you add (7+9i)+(2+i) in trigonometric form?

1 Answer
Oct 24, 2016

= sqrt(181) *(cos(0.83798)+i sin(0.83798))

Explanation:

It is usually easier to simplify cartesian form and then convert to trigonometric afterwards,

(7+9i)+(2+i)

9+10i

now we convert to trigonometric.

9+10i = r*cis(theta)

r=sqrt(9^2+10^2)

r=sqrt(181)

theta=tan^-1(10/9)

theta=0.83798

giving us,

(7+9i)+(2+i) = sqrt(181) *cis(0.83798)

or in expanded form,

= sqrt(181) *(cos(0.83798)+i sin(0.83798))