How do you add (-7+9i) and (-1+6i) in trigonometric form?

1 Answer
Jul 9, 2018

color(indigo)(=> -8+ 15i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(-7^2+ 9^2))=sqrt 130
r_2=sqrt(-1^2+ 6^2) =sqrt 37

theta_1=tan^-1(9 / -7)~~ 127.87^@, " II quadrant"
theta_2=tan^-1(6/ -1)~~ 333.43^@, " II quadrant"

z_1 + z_2 = sqrt 130 cos(127.87) + sqrt 37 cos(99.46) + i (sqrt 130 sin 127.87 + sqrt 37 sin 99.46)

=> -7 - 1 + i (9 + 6 )

color(indigo)(=> -8+ 15i