How do you add (8+4i) and (3-3i) in trigonometric form?

1 Answer
Jun 25, 2018

color(crimson)(=> 11+ i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(4^2+ 8^2))=sqrt 80
r_2=sqrt(3^2+ -3^2) =sqrt 18

theta_1=tan^-1(4 / 8)~~ 26.57^@, " I quadrant"
theta_2=tan^-1(-3/ 3)~~ 315^@, " IV quadrant"

z_1 + z_2 = sqrt 80 cos(26.57) + sqrt 18 cos(315) + i (sqrt 80 sin 26.57 + sqrt 18 sin 315)

=> 8 + 3 + i (4 - 3 )

color(crimson)(=> 11+ i