Add (-8+4i)(−8+4i) and (-3-3i)(−3−3i) to obtain
-11+i−11+i
Use the formula
a+bi=sqrt(a^2+b^2)[cos(tan^-1 (b/a))+i*sin(tan^-1 (b/a)]a+bi=√a2+b2[cos(tan−1(ba))+i⋅sin(tan−1(ba)]
Let a=-11a=−11 and b=1b=1
magnitude" " " "r=sqrt(a^2+b^2)=sqrt((-11)^2+1^2)=sqrt122 r=√a2+b2=√(−11)2+12=√122
the angle theta=tan^-1 (1/(-11))=174.806^@θ=tan−1(1−11)=174.806∘
sqrt(122)[cos(tan^-1(1/(-11)))+isin(tan^-1(1/(-11)))]" " "√122[cos(tan−1(1−11))+isin(tan−1(1−11))] OR
sqrt(122)[cos(174.806^@)+isin(174.806^@)]" " "√122[cos(174.806∘)+isin(174.806∘)]
have a nice day... from the Philippines..