z=a+bi=r(cosθ+isinθ)
r=√a2+b2
θ=tan−1(ba)
r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))
r1=√82±92)=√145
r2=√42+62=√52
θ1=tan−1(−98)≈311.63∘, IV quadrant
θ2=tan−1(64)≈56.31∘, I quadrant
z1+z2=√145cos(311.63)+√52cos(56.31)+i(√145sin(311.63)+√52sin(56.31))
⇒8+4+i(−9+6)
⇒12−3i