How do you add (89i)+(4+6i) in trigonometric form?

1 Answer
Jun 25, 2018

123i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2
θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=82±92)=145
r2=42+62=52

θ1=tan1(98)311.63, IV quadrant
θ2=tan1(64)56.31, I quadrant

z1+z2=145cos(311.63)+52cos(56.31)+i(145sin(311.63)+52sin(56.31))

8+4+i(9+6)
123i