How do you add (-9+2i)+(2+4i) in trigonometric form?

1 Answer
Jul 27, 2018

color(magenta)(=> -7 + 6 i, " II Quadrant"

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(-9^2+ 2^2))=sqrt 85
r_2=sqrt(2^2+ 4^2) =sqrt 20

theta_1=tan^-1(2 / -9) ~~ 167.4712^@, " II quadrant"
theta_2=tan^-1(4/ 2)~~ 63.4349^@, " I quadrant"

z_1 + z_2 = sqrt 85 cos(167.4712) + sqrt 20 cos(63.4349) + i (sqrt 85 sin 167.4712 + sqrt 20 sin 63.4349)

=> -9 + 2 + i (2 + 4 )

color(magenta)(=> -7 + 6 i, " II Quadrant"