How do you add (9-7i)+(1+i) in trigonometric form?

1 Answer
Jul 9, 2018

color(chocolate)(=> 10 - 6i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(9^2+ -7^2))=sqrt 130
r_2=sqrt(1^2+ 1^2) =sqrt 2

theta_1=tan^-1(-7 / 9)~~ 322.13^@, " IV quadrant"
theta_2=tan^-1(1/ 1)~~ 45^@, " I quadrant"

z_1 + z_2 = sqrt 130 cos(322.13) + sqrt 2 cos(45) + i (sqrt 130 sin 322.13 + sqrt 2 sin 45)

=> 9 + 1 + i (-7 + 1 )

color(chocolate)(=> 10 - 6i