z= a+bi= r (costheta+isintheta)
r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)
r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))
r_1=sqrt(9^2+ -7^2))=sqrt 130
r_2=sqrt(1^2+ 1^2) =sqrt 2
theta_1=tan^-1(-7 / 9)~~ 322.13^@, " IV quadrant"
theta_2=tan^-1(1/ 1)~~ 45^@, " I quadrant"
z_1 + z_2 = sqrt 130 cos(322.13) + sqrt 2 cos(45) + i (sqrt 130 sin 322.13 + sqrt 2 sin 45)
=> 9 + 1 + i (-7 + 1 )
color(chocolate)(=> 10 - 6i