How do you calculate sin(2sin−1(10x))? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Antoine Jul 3, 2015 sin(2sin−1(10x))=20x√1−100x2 Explanation: Let y=sin(2sin−1(10x)) Now, let θ=sin−1(10x) ⇒sin(θ)=10x ⇒y=sin(2θ)=2sinθcosθ Recall that: cos2θ=1−sin2θ⇒cosθ=√1−sin2θ ⇒y=2sinθ√1−sin2θ ⇒y=2⋅(10x)√1−(10x)2=20x√1−100x2 Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin(0.31))? What is sin(sin−1√22)? How do you find the exact value of cos(tan−1√3)? How do you evaluate sec−1√2? How do you find cos(cot−1√3) without a calculator? How do you rewrite sec2(tan−1x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin−1(0.1)? How do you solve the inverse trig function cos−1(−√22)? How do you solve the inverse trig function sin(sin−1(13))? See all questions in Inverse Trigonometric Properties Impact of this question 2390 views around the world You can reuse this answer Creative Commons License