How do you calculate tan(arccos(5/13))?

1 Answer
Feb 6, 2015

The answer is: 12/5.

If you set alpha=arccos(5/13)rArrcosalpha=5/13 than we have to calculate:

tanalpha=sinalpha/cosalpha.

cosalpha=5/13rArrsinalpha=sqrt(1-cos^2alpha)=sqrt(1-25/169)=

=sqrt((169-25)/169)=sqrt(144/169)=12/13.

So:

tanalpha=(12/13)/(5/13)=12/13*13/5=12/5.