How do you combine (x^3 - x - 4) - (x^2 + x - 4)?

2 Answers
Mar 5, 2018

See a solution process below:

Explanation:

First, remove all of the terms from parenthesis. Be careful to handle the signs of each individual term correctly:

x^3 - x - 4 - x^2 - x + 4

Next, group like terms in descending order of the size of their exponents:

x^3 - x^2 - x - x - 4 + 4

Now, combine like terms:

x^3 - x^2 - 1x - 1x - 4 + 4

x^3 - x^2 + (-1 - 1)x + (-4 + 4)

x^3 - x^2 + (-2)x + 0

x^3 - x^2 - 2x

Mar 5, 2018

color(magenta)(=x(x+1)(x+2)

Explanation:

(x^3-x-4)-(x^2+x-4)

Multiplying the bracket with the - sign.

=x^3-xcancel(-4)-x^2-xcancel(+4)

=x^3-x^2-2x

=x(x^2-x-2)

Identity= x^2+(a+b)x+ab , where x=x, a=2 & b=-1

= x[x(x-1)+2(x-1)]

Taking the common bracket out:

color(magenta)(=x(x+1)(x+2)

~Hope this helps! :)