How do you condense 3log_2 b - log_2 4 - 2log_2 C?

2 Answers
Jun 14, 2016

3log_2b-log_2(4)-2log_2c=log_2(b^3/(4c^2))

Explanation:

Using plog_am=log_am^p and loga+logb-logc=log((ab)/c)

3log_2b-log_2(4)-2log_2c

= log-2(b^3)-log_2(4)-log_2(c^2)

= log_2(b^3/(4c^2))

Jun 14, 2016

log_2(b^3/(4C^2)).

Explanation:

The Rule (1) mlog_2n=log_2n^m.
Rule (2) log_2p-log_2q=log_2(p/q).

Thus, by Rule (1), 3log_2b=log_2b^3, -2log_2C=-log_2C^2.
Combining these by Rule (2) we get, 3log_2b-2log_2C=log_2{(b^3)/(C^2)}.

Finally, we get the simplification =log_2{(b^3)/(C^2)}-log_2(4)=log_2{(b^3/C^2)/4}=log_2(b^3/(4C^2)).