How do you condense ln5/2+ln6/2+ln7/2?

1 Answer
Dec 4, 2016

Using the exponential logarithm rule, alogb=logb^a, ln5/2+ln6/2+ln7/2 can be written as

ln5^(1/2)+ln6^(1/2)+ln7^(1/2)=lnsqrt5+lnsqrt6+lnsqrt7

Using the logarithmic multiplication rule, loga+logb=logab, lnsqrt5+lnsqrt6+lnsqrt7=lnsqrt210