How do you convert (0, -6) to polar form?

2 Answers
Jun 29, 2016

Polar coordinates are (6,-pi/2).

Explanation:

When Cartesian coordinates (x,y) are converted into polar coordinates (r,theta), we have the relation

x=rcostheta and y=rsintheta and hence

r=sqrt(x^2+y^2), costheta=x/r and sintheta=y/r.

hence for (0,-6)

r=sqrt(0^2+(-6)^2)=sqrt(0+36)=sqrt36=6

and as costheta=0/6=0 and sintheta=-6/6=-1,

we have theta=-pi/2

Hence polar coordinates are (6,-pi/2).

Jun 29, 2016

Polar conversion is (6,-pi/2).

Explanation:

Cartesian (x,y) in polar is (r,theta), where, x=rcostheta, y=rsintheta, theta in(-pi,pi], x^2+y^2=r^2.

Clearly, r=6.

Now x=rcostheta rArr 0=6costheta rArr costheta = 0.
y=rsintheta rArr -6=6sintheta rArr sintheta =-1.

We conclude that theta=-pi/2.

Hence, polar conversion is (6,-pi/2).