How do you convert 1 + 4i to polar form?

1 Answer
May 15, 2016

~=sqrt(17)(cos1.33 + isin1.33)

Explanation:

If z = a +bi

Then z may be expressed in polar form as:

z = r(cos theta + i sin theta)
Where: r = sqrt(a^2 + b^2) and theta = arctan(b/a)

In this example: z=1+4i
Hence: a=1 and b=4

Therefore: r = sqrt(1^2+4^2) =sqrt(17)
And: theta = arctan(4/1) ~= 1.33

Hence: z ~= sqrt(17)(cos 1.33 + i sin 1.33)