How do you convert (1, 5pi/6) into rectangular coordinates?

1 Answer
Mar 21, 2016

(-sqrt3/2 , 1/2 )

Explanation:

Using the formulae that links Polar to Cartesian coordinates.

• x = rcostheta

• y = rsintheta

here r = 1 and theta = (5pi)/6

hence : x = 1xxcos((5pi)/6) = cos((5pi)/6) = -cos(pi/6)

and y = 1xxsin((5pi)/6) = sin((5pi)/6) = sin(pi/6)

now the exact value of cos(pi/6) = sqrt3/2
and the exact value of sin(pi/6) = 1/2

thus x = - cos(pi/6) = - sqrt3/2
and y = sin(pi/6) = 1/2