How do you convert 1+jsqrt3 to polar form?

1 Answer
Jul 23, 2016

1+jsqrt3=2(cos(pi/3)+jsin(pi/3))

Explanation:

To write the complex number, say a+jb, where j^2=-1 in polar coordinates, we write them as

z=r(costheta+jsintheta).

Now as rcostheta=a and rsintheta=b.

r=sqrt(a^2+b^2), theta=tan^(-1)(b/a)

Hence here for complex number 1+jsqrt3

r=sqrt(1^2+(sqrt5)^2)=sqrt4=2 and theta=tan^(-1)(sqrt3/1)=tan^(-1)sqrt3=pi/3

Hence 1+jsqrt3=2(cos(pi/3)+jsin(pi/3))