Let us write the two complex numbers in polar coordinates and let them be
2-2i=r_1(cosalpha+isinalpha) and -1-i=r_2(cosbeta+isinbeta)
Then (2-2i)/(-1-i) is given by
(r_1(cosalpha+isinalpha)*(r_2(cosbeta-isinbeta)))/(r_2(cosbeta+isinbeta)(r_2(cosbeta-isinbeta))) which when simplified becomes
(r_1*r_2(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/(r_2^2(cos^2beta+sin^2beta)) or
(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta) or
z_1/z_2 is given by (r_1/r_2, (alpha-beta)),
Now as |2-2i|=sqrt(2^2+(-2)^2)=sqrt8=2sqrt2 and 2-2i=2sqrt2(1/sqrt2-i/sqrt2)=(cos((7pi)/4)+isin((7pi)/4)
and |-1-i|=sqrt((-1)^2+(-1)^2)=sqrt2 and -1-i=sqrt2(-1/sqrt2-i/sqrt2)=(cos((5pi)/4)+isin((5pi)/4))
Hence, (2-2i)/(-1-i)=((2sqrt2)/sqrt2)*(cos((7pi)/4-(5pi)/4)+isin((7pi)/4-(5pi)/4))
= 2(cos(pi/2)+isin(pi/2))