For 2-i22−i2, the polar form re^(itheta)reiθ is given by
(2, -2)=r(cos theta, sin theta)(2,−2)=r(cosθ,sinθ).
Here,
r = sqrt(2^2+(-2)^2)=2sqrt2r=√22+(−2)2=2√2,
cos theta =2/r=1/sqrt 2>0cosθ=2r=1√2>0 and
sin theta =-2/r=-1/sqrt2<0sinθ=−2r=−1√2<0.
The Q_4Q4 thetaθ is -pi/4−π4
So, the given expression
(2-i2)^5(2−i2)5
=(2sqrt2 e^(i(-pi/4)))^5=(2√2ei(−π4))5
=64sqrt2e^(5(-ipi/4))=64√2e5(−iπ4)
-64sqrt2e^(i(-2pi+3/4pi))−64√2ei(−2π+34π)
=64sqrt2e^(-i2pi)e^(i(3/4pi))=64√2e−i2πei(34π)
=64sqrt2(cos(3/4pi)+isin(3/4pi))=64√2(cos(34π)+isin(34π)), using e^(-i2pi)=1e−i2π=1
. .