How do you convert (2-2i)^5(22i)5 to polar form?

1 Answer
Oct 24, 2016

For 2-i22i2, the polar form re^(itheta)reiθ is given by

(2, -2)=r(cos theta, sin theta)(2,2)=r(cosθ,sinθ).

Here,

r = sqrt(2^2+(-2)^2)=2sqrt2r=22+(2)2=22,

cos theta =2/r=1/sqrt 2>0cosθ=2r=12>0 and

sin theta =-2/r=-1/sqrt2<0sinθ=2r=12<0.

The Q_4Q4 thetaθ is -pi/4π4

So, the given expression

(2-i2)^5(2i2)5

=(2sqrt2 e^(i(-pi/4)))^5=(22ei(π4))5

=64sqrt2e^(5(-ipi/4))=642e5(iπ4)

-64sqrt2e^(i(-2pi+3/4pi))642ei(2π+34π)

=64sqrt2e^(-i2pi)e^(i(3/4pi))=642ei2πei(34π)

=64sqrt2(cos(3/4pi)+isin(3/4pi))=642(cos(34π)+isin(34π)), using e^(-i2pi)=1ei2π=1

. .