Given:
2=(-x+2y)^2-y-x
x=rcostheta
y=rsintheta
Now,
2=(-rcostheta+2rsintheta)^2-rsintheta-rcostheta
2=r^2(-costheta+2sintheta)^2-r(sintheta+costheta)
2=r^2((costheta)^2-2costheta(2sintheta)+(2sintheta)^2)-rsintheta-rcostheta
2=r^2cos^2theta-4r^2costhetasintheta+4r^2sin^2theta-rsintheta-rcostheta
2=r^2(1+cos2theta)/2-4r^2(sin2theta)/2+4r^2(1-cos2theta)/2-r(sintheta+costheta)
Simplifying further,
2=r^2(0.5+0.5cos2theta-2sin2theta+2-2cos2theta)-r(sintheta+costheta)
2=r^2(2.5-1.5cos2theta-2sin2theta)-r(sintheta+costheta)
Or
r^2(2.5-1.5cos2theta-2sin2theta)-r(sintheta+costheta)-2=0