How do you convert 2=(-x-3y)^2-5y+7x into polar form?

1 Answer
Apr 2, 2017

Substitute rcos(theta) for x and rsin(theta) for y and then simplify to a quadratic in r.
Use the positive root of the quadratic formula

Explanation:

Given: 2=(-x-3y)^2-5y+7x

Here is the graph of the Cartesian equation.

![Desmos.com](useruploads.socratic.org)

Substitute rcos(theta) for x and rsin(theta) for y:

2=(-rcos(theta)-3rsin(theta))^2-5rsin(theta)+7rcos(theta)

Simplify:

2=((-1)(r)(cos(theta)+3sin(theta)))^2+7rcos(theta)-5rsin(theta)

2=(-1)^2(r)^2(cos(theta)+3sin(theta))^2+(7cos(theta)-5sin(theta))r

0=(cos(theta)+3sin(theta))^2(r)^2+(7cos(theta)-5sin(theta))r -2

0=(cos(theta)+3sin(theta))^2r^2+ (7cos(theta)-5sin(theta))r - 2

The above is a quadratic where a = (cos(theta)+3sin(theta))^2, b = 7cos(theta)-5sin(theta) and c = -2

Using the positive root of the quadratic formula:

r = (5sin(theta)-7cos(theta) + sqrt((7cos(theta)-5sin(theta))^2+8(cos(theta)+3sin(theta))^2))/(2(cos(theta)+3sin(theta))^2)

This is the polar equation.

Here is the graph of the polar equation

![Desmos.com](useruploads.socratic.org)

This proves that the conversion is correct.