To convert 2y=-x^2+3x2y=−x2+3x
Use x=r*cos thetax=r⋅cosθ and y=r*sin thetay=r⋅sinθ
Let's do it
2y=-x^2+3x2y=−x2+3x
2(r*sin theta)=-(r*cos theta)^2+3(r*cos theta)2(r⋅sinθ)=−(r⋅cosθ)2+3(r⋅cosθ)
2*r*sin theta=-r^2*cos^2 theta+3*r*cos theta2⋅r⋅sinθ=−r2⋅cos2θ+3⋅r⋅cosθ
divide both sides of the equation by rr
(2*r*sin theta)/r=(-r^2*cos^2 theta)/r+(3*r*cos theta)/r2⋅r⋅sinθr=−r2⋅cos2θr+3⋅r⋅cosθr
(2*cancelr*sin theta)/cancelr=(-cancelr^2*cos^2 theta)/cancelr+(3*r*cos theta)/cancelr
2*sin theta=-r*cos^2 theta+3*cos theta
Transposition
r*cos^2 theta=3*cos theta-2*sin theta
divide both sides by cos^2 theta
(r*cos^2 theta)/cos^2 theta=(3*cos theta-2*sin theta)/cos^2 theta
(r*cancelcos^2 theta)/cancel(cos^2 theta)=(3*cos theta-2*sin theta)/cos^2 theta
color(red)(r=(3*cos theta-2*sin theta)/cos^2 theta)
God bless ....I hope the explanation is useful.