How do you convert 3=(x+2y)^2+3y into polar form?

1 Answer
Mar 28, 2017

Please see the explanation.

Explanation:

Given: 3=(x+2y)^2+3y

Here is the graph in Cartesian form:

![Desmos.com](useruploads.socratic.org)

Substitute rcos(theta) for x:

3 = (rcos(theta)+2y)^2 + 3y

Substitute rsin(theta) for y:

3 = (rcos(theta)+2rsin(theta))^2 + 3rsin(theta)

Write in quadratic form:

(cos(theta)+2sin(theta))^2r^2 + 3sin(theta)r - 3 = 0

Use the positive root of the quadratic formula:

r = (-3sin(theta)+sqrt(9sin^2(theta)+12(cos(theta)+2sin(theta))^2))/(2(cos(theta)+2sin(theta))^2)

Here is the graph in polar form:

![Desmos.com](useruploads.socratic.org)