How do you convert 3x^2+6xy-y^2=9 into polar form?

1 Answer

r=3/sqrt(3*cos^2 theta+6*sin theta*cos theta-sin^2 theta)

Explanation:

Use x=r cos theta and y=r sin theta

from the given

3x^2+6xy-y^2=9

3(r cos theta)^2+6(r cos theta)(r sin theta)-(r sin theta)^2=9

3r^2 cos^2 theta+6r^2*sin theta*cos theta-r^2 sin^2 theta=9

r^2(3 cos^2 theta+6*sin theta*cos theta- sin^2 theta)=9

r^2=9/(3 cos^2 theta+6*sin theta*cos theta- sin^2 theta)

r=sqrt(9/(3 cos^2 theta+6*sin theta*cos theta- sin^2 theta))

r=3/sqrt(3 cos^2 theta+6*sin theta*cos theta- sin^2 theta)

have a nice day... from the Philippines