How do you convert 3xy=2x^2-3x+2y^2 into a polar equation?

1 Answer
Oct 10, 2016

Please see the explanation for the process.

r = -((3cos(theta))/(3(cos(theta))(sin(theta)) - 2))

Explanation:

Substitute rcos(theta) for x and rsin(theta) for y:

3(rcos(theta))(rsin(theta)) = 2(rcos(theta))^2 - 3rcos(theta) + 2(rsin(theta))^2

Factor out r whenever possible:

3r^2(cos(theta))(sin(theta)) = 2r^2cos^2(theta) - 3rcos(theta) + 2r^2sin^2(theta)

Swap the last two terms:

3r^2(cos(theta))(sin(theta)) = 2r^2cos^2(theta) + 2r^2sin^2(theta) - 3rcos(theta)

Combine the r^2 terms on the right:

3r^2(cos(theta))(sin(theta)) = 2r^2(cos^2(theta) + sin^2(theta)) - 3rcos(theta)

Substitute 1 for cos^2(theta) + sin^2(theta):

3r^2(cos(theta))(sin(theta)) = 2r^2 - 3rcos(theta)

Combine like terms:

r^2(3cos(theta))(sin(theta)) - 2) = - 3rcos(theta)

Move everything to the left side:

r^2(3cos(theta))(sin(theta)) - 2) + 3rcos(theta) = 0

Divide both sides by (3cos(theta))(sin(theta)) - 2)

r^2 + r((3cos(theta))/(3(cos(theta))(sin(theta)) - 2)) = 0

Divide both sides by r:

r + ((3cos(theta))/(3(cos(theta))(sin(theta)) - 2)) = 0

Solve for r:

r = -((3cos(theta))/(3(cos(theta))(sin(theta)) - 2))