Substitute rcos(theta) for x and rsin(theta) for y:
3(rcos(theta))(rsin(theta)) = 2(rcos(theta))^2 - 3rcos(theta) + 2(rsin(theta))^2
Factor out r whenever possible:
3r^2(cos(theta))(sin(theta)) = 2r^2cos^2(theta) - 3rcos(theta) + 2r^2sin^2(theta)
Swap the last two terms:
3r^2(cos(theta))(sin(theta)) = 2r^2cos^2(theta) + 2r^2sin^2(theta) - 3rcos(theta)
Combine the r^2 terms on the right:
3r^2(cos(theta))(sin(theta)) = 2r^2(cos^2(theta) + sin^2(theta)) - 3rcos(theta)
Substitute 1 for cos^2(theta) + sin^2(theta):
3r^2(cos(theta))(sin(theta)) = 2r^2 - 3rcos(theta)
Combine like terms:
r^2(3cos(theta))(sin(theta)) - 2) = - 3rcos(theta)
Move everything to the left side:
r^2(3cos(theta))(sin(theta)) - 2) + 3rcos(theta) = 0
Divide both sides by (3cos(theta))(sin(theta)) - 2)
r^2 + r((3cos(theta))/(3(cos(theta))(sin(theta)) - 2)) = 0
Divide both sides by r:
r + ((3cos(theta))/(3(cos(theta))(sin(theta)) - 2)) = 0
Solve for r:
r = -((3cos(theta))/(3(cos(theta))(sin(theta)) - 2))