How do you convert 3xy=-x^2-2y^2 into a polar equation?

1 Answer

theta=(3pi)/4=135^@ and theta=tan^-1 (-1/2)=153.435^@

Explanation:

Start with the given

3xy=-x^2-2y^2

x^2+3xy+2y^2=0

do factoring to simplify

(x+y)(x+2y)=0

Use x=r cos theta and y=r sin theta

(x+y)(x+2y)=0

(r cos theta+r sin theta)(r cos theta+2*r sin theta)=0

cancel all the rs

(cos theta+ sin theta)( cos theta+2* sin theta)=0

equate both factors to zero

cos theta+ sin theta=0

sin theta=-cos theta

tan theta=-1

theta=(3pi)/4=135^@

For the other factor:

cos theta+2* sin theta=0

2*sin theta=-cos theta

tan theta=-1/2

theta=tan^-1 (-1/2)=153.435^@

These are 2 lines passing thru the Origin (0, 0) with
slopes =-1 and -1/2

graph{3xy=-x^2-2y^2[-20,20,-10,10]}

have a nice day !