How do you convert 3y= 3x^2-6xy-x into a polar equation?

1 Answer
Dec 5, 2016

r=sec theta( (3tan theta+1)/(3-6tan theta)). The graph of the given hyperbola is inserted.

Explanation:

The conversion formula is

(x, y)=r(cos theta, sin theta),

Rearranging, the given equation becomes

x= r cos theta)=(3y-x)?(3x-6y)

=(3 sin theta - cos theta)/(3cos theta-6 sin theta)

=(3 tan theta+1)(3-6 tan theta), So, explicitly,

r=sec theta( (3tan theta+1)/(3-6tan theta))

graph{3x^2-6xy-3y-x=0 [-10, 10, -5, 5]}