How do you convert # -4 + 8i# to polar form?
2 Answers
In polar coordinates, the point will be
Explanation:
For coordinates in polar form,
We will use Pythagoras' theorem to find
(since
So
Explanation:
#"to convert from "color(blue)"cartesian to polar form"#
#"that is "(x,y)to(r,theta)" where"#
#•color(white)(x)r=sqrt(x^2+y^2)#
#•color(white)(x)theta=tan^-1(y/x)color(white)(x)-pi< theta <=pi#
#"here " x=-4" and "y=8#
#rArrr=sqrt((-4)^2+8^2)=sqrt80=4sqrt5#
#-4+8i" is in the second quadrant "#
#"so we must ensure that "theta" is in the second quadrant"#
#theta=tan^-1(2)=1.11larrcolor(red)" related acute angle"#
#rArrtheta=(pi-1.11)=2.03larrcolor(red)" in second quadrant"#
#rArr-4+8ito(-4,8)to(4sqrt5,2.03)#