How do you convert # -4 + 8i# to polar form?

2 Answers
Jul 15, 2017

In polar coordinates, the point will be #(r,theta)=(6.92i, -1.11i)#

Explanation:

For coordinates in polar form, #(r, theta)#, we need to find the value of #r# and the value of #theta#.

We will use Pythagoras' theorem to find #r# and the #tan# function to find #theta#.

#r=sqrt((-4)^2+8i^2)=sqrt(16-64) =sqrt(-48)=6.92i#

(since #8i^2=8ixx8i=8sqrt(-1)xx8sqrt(-1)=64xx-1=-64#)

#tantheta=(opp)/(adj)=(8i)/-4=-8/4i=-2i#

So #theta=tan^-1(-2i)=-1.11i#

Jul 15, 2017

#(4sqrt5,2.03)#

Explanation:

#"to convert from "color(blue)"cartesian to polar form"#

#"that is "(x,y)to(r,theta)" where"#

#•color(white)(x)r=sqrt(x^2+y^2)#

#•color(white)(x)theta=tan^-1(y/x)color(white)(x)-pi< theta <=pi#

#"here " x=-4" and "y=8#

#rArrr=sqrt((-4)^2+8^2)=sqrt80=4sqrt5#

#-4+8i" is in the second quadrant "#

#"so we must ensure that "theta" is in the second quadrant"#

#theta=tan^-1(2)=1.11larrcolor(red)" related acute angle"#

#rArrtheta=(pi-1.11)=2.03larrcolor(red)" in second quadrant"#

#rArr-4+8ito(-4,8)to(4sqrt5,2.03)#