How do you convert 6=(5x+4y)^2-7x into polar form?

1 Answer
Jul 16, 2018

r^2(4\cos \theta + 5\sin \theta)^2-7r\cos \theta-6=0.

Explanation:

Just remember these coordinate conversions:

x=r\cos \theta

y=r\sin \theta

r=\sqrt{x^2+y^2}

So the given equation is converted to

6=(4r\cos \theta + 5r\sin \theta)^2-7r\cos \theta.

We can rearrange this to:

r^2(4\cos \theta + 5\sin \theta)^2-7r\cos \theta-6=0.